www.akuabihar.com w.akubihar.com www.akubihar.com www.akubihar.co

www.akuabihar.com

Code: 031815

B.Tech. 8th Semester Exam., 2017 Modern Control Theory

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Questions No. 1 is compulsory.
- Answer any seven questions of the following: 2×7=14
 - (a) What are the drawbacks in transfer function model analysis?
 - (b) What is state and state variable?
 - (c) What is the need for state observer?
 - (d) Explain Eigen vector.
 - (e) What is pole placement by state feedback?
 - (f) Explain backlash.
 - (g) Write any two properties of eigenvalues.
 - (h) What is a dominant pole?
 - (i) What are phase variables?
 - (j) What is state observer?

P.T.O.

www.akubihar.com

www.akubihar.com

(a) Derive the solution of homogeneous state equations.

(b) Draw the state variable diagram for the given transfer function.

$$\frac{C(s)}{R(s)} = \frac{5s}{3s^2 + 3s + 1}$$

www.akubihar.com

3. (a) A system is characterize by the transfer function.

$$\frac{Y(s)}{U(s)} = \frac{s+2}{s^3 + 3s^2 + 2s + 10}$$

Find the state and output equations.

(b) A system is described by the equations as

 $\dot{\mathbf{x}}(t) = \begin{bmatrix} -1 & 1 \\ 0 & 2 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \mathbf{u}$

$$\mathbf{y} = \begin{bmatrix} 1 & 2 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} \mathbf{x}(\mathbf{t})$$

Determine the transfer function.

4. Define controllability and observability. Comment on observability and controllability of the system described by the following state variable model.

$$\begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u}$$

Code: 031815

5. (a) Define the describing function. Derive the describing function for backlash or relay with dead zone. 8

(b) Discuss the stability analysis with describing function.

6. Write the properties of state transition matrices. Compute eAt when. 14

$$A = \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix}$$

- 7. Given the plant G(s) = 20(s+5)/s(s+1)(s+2), design the phase variable feedback gains to yield 9.5% overshoot and a settling time of 0.74 second.
- 8. (a) Discuss common non-linearities present in a system.
 - (b) Discuss the state variable approach for optimal control problem.
- Write short notes on any two of the following.
 - a. Liapunov's stability analysis
 - b. State observer design
 - c. Stability from phase plane
 - d. Dead-zone

www.akubihar.com_{Code: 031815}

3