Code: 031712

B.Tech 7th Semester Exam., 2018

LINEAR CONTROL THEORY

Time: 3 hours Full Marks: 70

Instructions:

http://www.akubihar.com

(i) The marks are indicated in the right-hand margin.

(ii) There are **NINE** questions in this paper.

(iii) Attempt FIVE questions in all.

(iv) Question No. 1 is compulsory.

1. Choose the correct answer [any seven] :

2×7=14

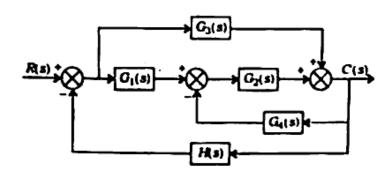
in a closed-loop control system

- (i) control action is independent of output
- (ii) output is independent of input
- (iii) there is no feedback
- (iv) control action is dependent on output
- The steady-state error due to a ramp input for a type two system is equal to
 - Jij zero
 - (ii) infinite
 - (iii) non-zero number
 - (iv) constant

(Turn Over)

http://www.akubihar.com

http://www.akubihar.com


http://www.akubihar.com

The characteristic equation of a system is $3s^4 + 10s^3 + 5s^2 + 2 = 0$. The system is

- (i) stable
- (ii) marginally stable
- (pl) unstable
- (iv) None of the above
- The characteristic equation of a system is $2s^4 + s^3 + 3s^2 + 5s + 10 = 0$. How many roots does system have in the right half of s-plane?
 - WYI
 - (ü) 2
 - (iii) 3
 - (iv) 4
- The characteristic equation of a system is $s(s+4)(s^2+2s+s)+k(s+1)=0$. What are the angles of the asymptotes for the root loci for $k \ge 0$?
 - (i) 60°, 180°, 300°
 - (ii) 0°, 180°, 300°
 - (iii) 120°, 180°, 240°
 - (iv) 0°, 120°, 240°

(5)

Find out transfer function (Cls) / R(s) for diagram below using block diagram reduction technique:

Find out c(t) (i.e., the output) for the given second-order system subject to a unit step input. Also find out the rise time, peak time, damping ratio, settling time and % overshoot on 2% of tolerance band :

$$T(s) = \frac{C(s)}{R(s)} = \frac{16}{s^2 + 3s + 16}$$

(b) Derive the expression for the position error constant (K,), velocity error constant (K,) and acceleration error constant (Ka).

http://www.akubihar.com

$$G(s)H(s) = \frac{k(s+\frac{4}{3})}{s^2(s+12)}$$

Sketch the root locus of the system. Find the value of k for which all roots are equal. What is the value of these roots?

Using Routh-Hurwitz stability criteria, find how many roots of characteristic equation lie on left-half of the s-plane: http://www.akubihar.com

$$s^6 + 3s^5 + 5s^4 + 9s^3 + 8s^2 + 6s + 4 = 0$$

The open-loop transfer function of a unity feedback system is given by

$$G(s) = \frac{k(s+1)}{s^3 + as^2 + 2s + 1}$$

Using Routh's criterion, determine value of k and a so that system oscillates at a frequency of 2 rad/s.

For series R-L-C network, find out the transfer function. Output is taken across inductor L and input is

$$R(s) = A\sin(\omega t + \theta)$$
 5

http://www.akubihar.com

(Turn Over)

6

AK9/191

(Continued) http://www.akubihar.com

http://www.akubihar.com

10

9

http://www.akubihar.com

(7)

(4)

(i) What will be the gain margin dB of a system having following open-loop transfer function?

$$G(s)H(s)=\frac{2}{s(s+1)}$$

- (i) 0
- (ii) 2
- (iii) 0·5
- (iv) **⇔**
- (j) A property of phase-lead compensation is that the
 - (i) overshoot is increased
 - (ii) bandwidth of closed-loop system is reduced
 - (jii) rise time of closed-loop system is reduced
 - (iv) gain margin is reduced
- (a) What are the different standard test signals used in control system? Discuss them.
 - (b) What is compensation in control system and its type? Discuss lag-lead compensation.

Obtain the polar plot for a system given below:

$$G(s) = \frac{(1+0\cdot 2s)(1+0\cdot 025s)}{s^3(1+0\cdot 005s)(1+0\cdot 001s)}$$

Determine whether plot cross the real axis. If so, determine frequency at which the plot cross the real axis and corresponding magnitude $|G(j\omega)|$

 A second-order system is described by the differential equation

$$\frac{d^2y(t)}{dt^2} + 0 \cdot 8 \frac{dy(t)}{dt} + y(t) = x(t)$$

when x(t) is the input and y(t) is the output. Determine resonance frequency, peak resonance, cut-off frequency and bandwidth. Also find out the output for unit ramp input.

- (a) State the Nyquist stability criterion.
 Define relative stability using Nyquist criterion.
 - (b) Draw the typical R-C lag network and derive transfer function. Why is it called a lag network? Comment on its effect on (i) gain cross-over frequency, (ii) bandwidth and (iii) signal to noise ratio.

14

7

7

AK9/191

(Continued)

tinued)

5

http://www.akubihar.com

http://www.akubihar.com

http://www.akubihar.com

AK9/191

(Turn Over)

http://www.akubihar.com

(2)

- What will be the type of the system, if the steady-state performance of control system yields a non-zero finite value of the velocity error constant?
 - (i) Type-0
 - الله Type-1
 - (iii) Type-2
 - (iv) Type-3
- A second-order system exhibits 100% overshoot. Its damping coefficient is
 - (i) equal to 0
 - (ii) greater than 1
 - (iii) less than 1
 - (iv) equal to 1
- For a unity feedback control system with

$$G(s) = \frac{9}{s(s+3)}$$

the damping ratio is

- (i) 0·5
- (ii) 1
- (iii) 0·707
- (iv) 0.33

http://www.akubihar.com

http://www.akubihar.com

(Continued)

(8)

- Draw the schematic diagram of a 2-phase servomotor and draw the torque-speed characteristic. What care is taken to obtain linear characteristic? Derive the linearized transfer function under load condition.
 - Explain the Mason's gain formula.

10

4

http://www.akubihar.com

http://www.akubihar.com Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्य, Paytm or Google Pay 🕏

AK9-1800/191

Code: 031712

AK9/191

http://www.akubihar.com

http://www.akubihar.com