AKUbihar.com

AKUbihar.com

AKUbihar.com

(2)

relationship between I_B and I_E ?

Which of the following is the correct

If a 169.7 V half-wave peak has an

average voltage of 54 V, what is the

average of two full-wave peaks?

Code: 041401

B.Tech 4th Semester Exam., 2018

BASIC ELECTRONICS

Full Marks: 70

Instructions:

Time: 3 hours

AKUbihar.com

AKUbihar.com

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct answer of the following (any seven): $2 \times 7 = 14$
 - (a) When checking a diode, low resistance readings both ways indicate the diode is
 - (i) open
 - (ii) satisfactory
 - (jii) faulty
 - (iv) not the problem

AKUbihar.com

AKUbihar.com

AKUbihar.com

(i) 119-9 V (ii) 108·0 V

_(iii) 115.7 V

(iv) 339.4 V

(i) $I_B = \beta I_E$

(ii) $I_B = I_E$

 $I_B = (\beta + 1) I_E$ $(i\nu) I_E = (\beta + 1) I_E$

The Q-point on a load line may be used to determine

- (i) V_C
- (ii) V_{CC}
- (iii) V_B
- (iv) I_C

8AK/348

(Turn Over)

8AK/348

(Continued)

AKUbihar.com

(3)

For the BJT to operate in the active (linear) region, the base-emitter junction must be ____ -biased and the base-collector junction must be ____ biased.

- (i) forward, forward
- 4ii forward, reverse
- (iii) reverse, reverse
- (iv) reverse, forward

What is the level of drain current I_D for gate-to-source voltages VGS less than (more negative than) the pinch-off level?

A Zero ampere

- Just Inss
- (iii) Negative value
- (iv) Undefined

How much times reverse saturation current will increase, if temperature increases 15 °C?

- (i) 2.52
- (ii) 4.62
- (iii) 4·12
- (iv) 2.82

(Turn Over)

(4)

(h) The total discharge time for the capacitor in a clamper having C = 0.01 μ F and $R = 500 \text{ k}\Omega$ is

5 ms

- (ii) 25 ms
- (iii) 2.5 ms
- (iv) 50 ms

How many op-amps are required to implement the equation $V_0 = V_1$?

- (i) 2
- (ii) 3
- (iii) 4
- (iv) 1

A non-inverting closed-loop op-amp circuit generally has a gain factor

- (i) less than one
- (iii) greater than one
- (iii) of zero
- (iv) equal to one

Differentiate between an ideal and a practical voltage source. Give their graphical representations and convert 10 V voltage source with its series resistance of 2Ω into its equivalent current source.

8AK/348

(Continued)

8AK/348

AKUbihar.com AKUbihar.com

AKUbihar.com

AKUbihar.com

AKUbihar.com

(5)

(b) Explain the working of a shunt capacitor filter and derive an approximate expression for ripple factor in half-wave, rectifier with shunt capacitor filter. 7+7=14

3. (a) Compare the differences between JFET and MOSFET and also prove that the transconductance g_m of a JFET is given by

$$g_m = \frac{2}{|V_p|} \sqrt{I_{DS} I_{DSS}}$$

(b) Explain the UJT as a relaxation oscillator. 9+5=14

AKUbihar.com

AKUbihar.com

Explain Zener and avalanche breakdown in semiconductors.

(b) Define α and β of a transistor. Also derive the relationship between them. 8+6=14

- 5. (a) Sketch the output characteristics for N-channel JFET with gate-source shorted (i.e., V_{GS} = 0). How are ohmic, pinch off and breakdown regions created?
 - (b) Explain the basic structure and working of a P-channel JFET. 8+6=14
- 6. (a) Compare the characteristics of CB, CE and CC configurations of a transistor. Draw the circuit of a common-collector

8AK/348

(Turn Over)

AKUbihar.com

AKUbihar.com

AKUbihar.com

transistor configuration and explain its operation. Also derive the relation between γ and α current amplification factors.

- (b) A collector to base circuit has $V_{CB} = 24 \text{ V}$, $R_B = 180 \text{ k}\Omega$, $R_C = 3 \cdot 3 \text{ k}\Omega$ and $V_{CE} = 10 \text{ V}$. Calculate h_{FE} and determine V_{CE} when a new transistor is replaced having $h_{FE} = 120$. 8+6=14
- 7. (a) An inverting op-amp has $R_f = 100 \text{ k}\Omega$ and $R_1 = 2 \text{ k}\Omega$. Find the voltage gain of the amplifier. Also find the amplifier input resistance, input current and the output voltage if the input voltage is 0.1 V. Assume op-amp to be ideal.
 - (b) Explain the working of an op-amp as an integrator circuit. 8+6=14

AKUbihar.com

- (a) Explain a voltage-shunt feedback amplifier with suitable example.
 - (b) In a transistor circuit, load resistance is $5 \text{ k}\Omega$ and quiescent current is 1.2 mA. Determine the operating point when the battery voltage $V_{CC} = 12 \text{ V}$. How will the Q-point change when the load resistance is changed from $5 \text{ k}\Omega$ to $7.5 \text{ k}\Omega$?

8AK/348

(Continued)

AKUbihar.com

AKUbihar.com

AKUbihar.com

AKUbihar.com

(7)

- 9. (a) Describe the structure, symbol and operation of SCR with the help of suitable diagrams.
 - (b) In an N-type semiconductor, the Fermi level lies 0.3 eV below the conduction band at 27 °C. If the temperature is increased to 55 °C, find the new position of the Fermi level. 7+7=14

AKUbihar.com

KUbihar.com

8AK-2260/348

Code: 041401

AKUbihar.com