(a) Describe the process of segmentation with diagram. (b) What is cache memory? State the importance of cache 7-7 memory. (a) Compare between RISC and CISC architecture. (b) Explain Flynn's taxonomy on parallel computing. 7÷7 5. (a) Write the steps for subtraction of two n-digit unsigned numbers M-N (N \neq 0) in base r. (b) Subtract 72532-13250 by using the above method. 7+7 6. (a) Explain instruction cycle for pipeline. (b) Write the steps, required to process each instruction. 7+7 7 How the instruction cycle in the CPU can be processed with a four segment pipeline? Explain with block diagram. 8. (a) Write some application areas where vector processing is used. (b) Write the difference between Isolated I/O and Memory mapped I/O. 7+7 7 + 7Short notes; [any 2] (a) Virtual memory (b) Speedup in Pipelining SIMD array processor

Code: 051602

B.Tech 6th Semester Examination, 2017

Computer Architecture

Time: 3 hours

Full Marks: 70

Instructions:

www.akubihar.com

www.akubihar.com

- (i) There are Nine Questions in this Paper.
- (ii) Attempt Five questions in all.
- (iii) Question No. 1 is Compulsory.
- (iv) The marks are indicated in the right-hand margin.
- 1. Compulsory Short answers type questions. (Answer any 7)

 $2 \times 7 = 14$

- (a) The DMA differs from the interrupt mode by
 - (i) The involvement of the processor for the operation
 - (ii) The method accessing the I/O devices
 - (iii) The amount of data transfer possible
 - (iv) Both (i) and (iii)
- (b) When generating physical addresses from logical address the offset is stored in
 - (i) Translation look-aside buffer
 - Relocation register
 - (iii) Page table
 - (iv) Shift register

Code: 051602

P.T.O.

www.akubihar.com

www.akubihar.com

www.akubihar.com

(c)	The computer architecture aimed at reducing the time of
	execution of instructions is

CISC

RISC (iii)

- (iii) ISA
- (iv) ANNA
- (d) In DMA transfers, the required signals and addresses are given by the
 - Processor
 - Device drivers

(iii) DMA controllers

- (iv) The program itself
- (e) Both the CISC and RISC architectures have been developed to reduce the.....
 - Cost
 - Time delay
 - Semantic gap
 - (iv) All of the above
- (f) In pipelining the task which requires the least time is performed first
 - True

False کتن

Code: 051602

www.akubihar.com

(g) The DMA controller has registers.											
	(i)	4	(ii)	2							
<u></u>	(iii)	3	(iv)	!							
(h)	In r	nemory-mapped I/O)								
address space. (ii) The I/O devices have a seperate address space.											
							(iii) The memory and I/O devices have an associate				
	address space										
 (iv) A part of the memory is specifically set aside for I/O operation (i) Any condition that causes a processor to stall is called 											
						· · · · · · · · · · · · · · · · · · ·					
						\	(1)	Hazard	(ii)	Page fault	
	(iii)	System error	(iv)	None of the above							
(j)	The	e situation where i	n the d	ata of operands are not							
	ava	ilable is called									
レ	(1)	Data hazard	(ii)	Stock							
	(iii)	Deadlock	(iv)	Structural hazard							
(a)	Wh	nat is DMA? Explai	n the wo	orking principle of DMA							
using block diagram.											
		_									

(b) What is Interrupt cycle? Explain with block diagram and flow chart.

Code: 051602

P.10