2012 (A)

akubihar.com

WATER RESOURCES ENGINEERING-1

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are TEN questions in the paper.
- (iii) Attempt FIVE questions, TWO from each Group is compulsory.
- (iv) Assume any suitable data, if required.

GROUP-A

- (a) Describe the Symon's rain gauge used in India with neat sketches.
 - (b) For a drainage basin of 600 km², isohyetais drawn for a storm gave the following data:

Isohyetals (interval, cm) : 15-12 12-9 9-6 6-3 3-

Inter-lankyetal 92 128 120 175 #5

Estimate the average depth of precipitation over the catchment.

- 2. (a) Distinguish between the following:

 (i) Potential and Actual evapotranspiration

 (ii) Infiltration appacity and Infiltration
 - (ii) Infiltration capacity and Infiltration rate

6

6.

- (iii) \$\psi_{\text{index}}\$ and \$W_{\text{index}}\$
- (iv) Land Pan and Infiltrometer
- (b) A reservoir had an average surface area of 20 km² during June 1982. In that month the mean rate of inflow = 10 m³/s, outflow = 15 m³/s, monthly rainfall = 10 cm and change in storage = 16 million m³. Assuming the scepage losses to be 1.8 cm, estimate the evaporation in that month.
- (a) Discuss the Horton equation of infiltration. Describe briefly the experimental method of determination of infiltration rate using double ring infiltrometer.
 - (b) The mass curve of an isolated storm over a watershed is given below:

akubihar.com

14

								8	ıkı
	Time from								
	start*(h)	à	3-0	3.5	4-0) 4	5	50	
	Curulative								
	rainfall (cm)		3.50	5-70	6.5	0 7	·30	7.70	
	If the storm	pre	oduc	ed a	direct	run	o No	ſ	
	3-5 cm at	the	outle	t of	the w	ater	thed		
	estimate th								
	duration of	ren	index ofall	~~~~		O1 111	ex 11.	. 8	
		1 (31)	шан	CACCE	15.			٥	
(a)	Define unit and limitati	hyd ons	lrogra of U	iph. '	Write	the	uses	5	
b)	The ordina	ates	αſ	the	. 2	he	11016		
-	hydrograph								
•	Derive the 6	he	Unit	Livei-	c Rive	:11 D(now.	,	
	Derive the 6 basin:	: May	O.III.	пуш	ografi	n 10	the		
			_					9	
	Time (hr)	-	. (2	, 4 .	б	8	10	- 1
	Ordinate of 2								
	ήΗ (m ₃ /s)		: 0	25	100	160	190	170	
	Time (hr)		. 13	2 14	16	18	20	22	
e .	Ordinate of 2	hr					•		
	UH (m3 /s)		. 11	0 70	30	20	6	. 0	
	,,						_	•	_
rite	short note	28 (on a	ıny	three	of	the		5

5. Write short notes on any three of the following:

- (a) Hydrologic cycle
- (b) Salient leatures of streams
- (c) Gumbel's equation for practical use
- (d) Rating curve
- (e) S curve

GROUP-B

- 6. (a) Differentiate between the following:
 - (i) Pipe flow and Open channel flow

6

9

- (fii) Steady and Unsteady flow
- (iii) Uniform and Non-uniform flow
- (iv) Rigid boundary and mobile boundary channel
- (b) Water flow at a depth of 2.0 m with velocity of 1.5 m/s in a wide rectangular channel. Find the height of hump required to produce critical flow without affection u/s depth.
- 7. (a) Derive the Chezy equation to compute the frictional losses.
 - (b) What is the most efficient channel section? A trapezoidal channel section with side slopes of 1 1 has to be designed to convey 10 m²/s af a velocity of 2 m/s, so that the amount of concrete lining for the bed and sides is minimum.
 - (i) Calculate the area of lining required for one metre length of the canal.
 - (ii) If the rugosity coefficient, n=0.015, calculate the bed slope of the canal for uniform flow.

akubihar.com

Discuss briefly the classification of flow 8. 6 profiles of gradually varied flow (b) A rectangular channel 9 m wide discharges water at normal depth 3.65 m. The bed slope is 1 in 4000 and Manning's n=0 017. A dam placed downstream raises the level to a height of the profile to 6.8 m immediately behind the dam. Determine the length 8 of the profile by single step. 9. (a) What are the different uses of hydraulic jump? Derive the equation of sequent depth ratios and energy loss in a rectangular channel. (b) In a rectangular channel of width 6.5 m, water is flowing at the rate of 95 m³/s, find the conjugate depth for an initial depth of 2 m. Also find the loss of 8 energy. 10. Write short notes on any three of the 14 following: Economical channel section Control sections *(b)* (c) Types of hydraulic jumps (d) Causes of unsteady flow

Code: 101307