2012 (A)

MATERIAL SCIENCE AND ENGINEERING MATERIALS

Time: 3 hours akubihar.com Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are TEN questions in this paper.
- (iii) Attempt any FIVE questions.
- 1. (a) Give the comparison among ionic, covalent and metallic bonds.
 - (b) What effect would you expect in different types of bonds on strength, ductility and conductivity?
- 2. (a) Define a space lattice. What are its important characteristics?
 - (b) Describe briefly the following with neat sketches:
 - (i) BCC structure
 - (ii) FCC structure
 - (iii) HCP structure
 - (iv) Miller indices

3.	(a)	Show from the fundamental principle,
•	(-7	the atomic packing factor for FCC and
		BCC structures are 0.74 and 0.68
		respectively. Also determine its coordi-
		nation number.

- (b) Copper has an FCC structure and an atomic radius of 1.278 Å. Calculate its density. Atomic weight of copper is 63.5 and Avogadro's number = 6.023×10²³.
- 4. (a) Define and explain briefly the following terms giving suitable sketches:
 - (i) Point defects
 - (ii) Line defects
 - (iii) Schottky defects
 - (iv) Edge and screw dislocations
 - (v) Burger's vector akubihar.com
 - (b) What is the difference between impurities and alloying elements? Name a few impurities present in steel.
- 5. (a) Distinguish clearly among the conductor, semiconductor and insulator of electricity using the energy band diagram model.
 - (b) What is a semiconductor? Name the various semiconductor materials. What is the difference between n-type and p-type semiconductors?

6

7

7

6

8

8

-6

7

14

14

б.		Distinguish between soft magnetic material and hard magnetic material. Give a few examples of each type indicating their composition and applications.
	(b)	Draw a typical B-H curve for ferro- magnetic material and explain the significance of nature of the curve.

- 7. (a) Explain the basic mechanism involved in solid solution hardening and give examples of alloys strengthened by this process. akubihar.com
 - (b) How does the plastic deformation in polycrystalline metals differ from that of single crystal?
- 8. Draw the complete iron-carbon phase diagram and discuss briefly the structure and properties of steel having 0.83% and 0.43% carbon when cooled from 1000 °C to room temperature.
- 9. Explain the following:
 - (a) Why is martensite so hard and brittle?
 - (b) Why is damping capacity of ductile iron better than steel?

- (c) Why is glass used mostly as reinforcement material for composites?
- (d) Why continuous cooling of plain carbon steel does not show bainite in its microstructure?
- 10. (a) Give the composition, properties and uses of the following alloys:
 - (i) High-speed steel
 - (ii) Silicon steel
 - (iii) Stainless steel
 - (iv) Vanadium steel
 - (v) Tungsten steel akubihar.com
 - (b) What are the commercial alloys of aluminium? Briefly describe their composition and uses.

akubihar.com

6