Code: 011201

A block of 3 kg mass slides down a frictionless loop of 3 m radius and enters a rough horizontal plane and compress a spring of stiffness 250 N/m as shown in Fig. 7.

Determine the compression of the spring, the coefficient of friction between the block and plane being 0.25.

B.Tech 2nd Semester Exam., 2014

ENGINEERING MECHANICS

Time . 3 hours

Full Marks: 70

Instructions:

- (i) The questions are of equal value.
- (ii) There are **NINE** questions in this paper.
- (iii) Attempt **FIVE** questions in all.
- (iv) Question No. 1 is compulsory.
- Choose the correct answer any seven of the following: akubihar.com
 - The principle of transmissibility can be applied only when the body is treated as
 - (i) a particle
 - (ii) a rigid body
 - (iii) deformable
 - (iv) a continuum

Force couple is a

- (i) fixed vector
- ii) sliding vector
- (iii) free vector
- (iv) unit vector

14AK-2500/515

(Turn Over)

- (i) parallel akubihar.com
- (ii) perpendicular
- full inclined at 45°
- (a) inclined at 135°
- Three forces acting on a body can keep it in equilibrium, only when they are
 - (i) collinear
 - (u) coplanar and concurrent
 - (iii) coplanar and parallel
 - (iv) coplanar and non-concurrent
- The tangent of the angle of friction is
 - (i) angle of repose
 - (ii) coefficient of friction
 - (ut) cone of friction
 - (nv) limiting friction
- A screw jack with lead angle θ and friction angle 6, is said to be in self-locking if
 - 10 8 > 0.
- akubihar.com
- ful 0 < 0.
- (m) H = 0.
- $f(u) \cdot \phi_u = 0$

- The centroid of an equilateral triangle of side a with a side parallel to the x-axis is
 - (i) a/2, $a/\sqrt{6}$

akubihar.com

- (iii) a/2, $a/\sqrt{12}$
- (ui) a/2, $a/\sqrt{24}$
- (iv) a/3, a/3
- The product of inertia of a right-angled triangle of base b and height h about its centroidal axes is

$$(i) \quad \frac{b^2h^2}{36}$$

(i)
$$\frac{b^2h^2}{36}$$
 (ii) $-\frac{b^2h^2}{36}$

(iii)
$$-\frac{b^2h^2}{72}$$
 (iv) $\frac{b^2h^2}{48}$

(iv)
$$\frac{b^2h^2}{48}$$

- Ail rectilinear
- (ii) curvilinear
- (iii) rotational
- (iv) general motion

In a conservative force field

- (fi) work done is zero
- (u) kinetic energy is constant
- (iii) potential energy is constant
- (iv) total mechanical energy is constant

akubihar.com

- (a) Define the terms—continuum, rigid bodyand particle
 - (b) Given the following vectors

$$\vec{a} = 2\hat{\imath} - 2\hat{\jmath} + 3\hat{k}$$

$$\vec{b} = \hat{i} + \hat{j} + 3\hat{k}$$

$$\vec{c} = 2\hat{i} + \hat{j} + \hat{k}$$

Determine whether they are coplanar or not

 $\mathcal{L}_{_{\!\scriptscriptstyle T}}$ akubihar.com

- 3. (a) Explain the principle of transmissibility of a force
 - (b) Find the resultant of the forces concurrent at A as shown in Fig. 1

The magnitudes of forces in cables AB, AC and AD are 1200 N, 1500 N and 1000 N respectively.

(Continued)

akubihar.com

4. (a) Define force couple and moment of a couple

Reduce the system of forces as shown in Fig 2 to an equivalent force and determine its magnitude and location with respect to A.

Define with sketch the different types of supports.

A smooth pulley supporting a load of 3000 N is mounted at B on a horizontal beam ACF. A force of 4000 N is acting at free end F shown in Fig. 3

akubihar.com

If the beam weighs 1000 N, find the support reactions Neglect the weight of pulley and also its size

Fig 3

- (a) Define angle of friction, angle of repose and cone of friction.
 - (b) As shown in Fig 4, block A of 15 kg mass is connected to another block B of 10 kg mass ? by a string passing over a frictionless pulley

Fig. 4

Determine the minimum mass of the block C which is connected to the wall by a string CD and placed over block A to keep it from sliding. Take coefficient of friction between all contact surfaces to be 0.25. akubihar.com

 (a) The mass moment of inertia gives a measure of resistance to rotation about an axis-Discuss. (b) Determine the forces in the various members of a pin-jointed framework as shown in Fig. 5

8. What is meant by instantaneous centre? A long rod AB is supported at the upper edge of a wall and on a horizontal floor as shown in Fig. 6—akubihar.com

Fig 6

If the lower end of the rod moves with a velocity 1 m/s, find the velocity of the contact point C and the angular velocity of the rod, when the rod is at 60° to the horizontal akubihar.com