B.Tech 5th Semester Exam., 2021

(New Course)

CONTROL SYSTEMS

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Attempt any seven:

2×7=14

- (a) Define a closed-loop control system using an example.
- (b) Find transfer function of a series R-L circuit.
- (c) Define gain margin and phase margin using Bode plot.
- (d) Define gain cross-over frequency and phase cross-over frequency using Bode plot.

- (e) Explain BIBO stability and develop the expression for it.
- (f) Define minimum phase, non-minimum phase and all-pass transfer functions.
- (g) Discuss the effects of (i) addition of zeros and (ii) addition of poles on root locus.
- (h) Define gain margin and phase margin using polar plot.
- State Nyquist criterion. Write the advantages of Nyquist plot.
- (j) What do you mean by describing function?
- 2. (a) Derive the transfer function of the network shown below:

22AK/340

(Continued)

(b) Find the equations of the system shown in figure below:

- (c) Write and explain block diagram reduction rules. 5+5+4=14
- (a) Consider a unity feedback control system with forward path gain A, feedback path gain H and forward path transfer function

$$G(s) = \frac{\omega_n^2}{s^2 + 2\xi \omega_n s + \omega_n^2}$$

with $\omega_n = 8\pi/T$, T = 6.28 sec and $\xi = 0.3$. Calculate the open-loop and closed-loop sensitivities for changes in A and H.

(b) Derive peak overshoot. Find J and D for the system shown in figure below to yield 35% peak overshoot and a settling time of 1.5 seconds (for 2% error band) for a step input of torque T(t):

4. (a) A unity feedback servo driven instrument has open-loop transfer function

$$G(s) = \frac{K}{s(sT+2)}$$

- (i) Find the factor by which the gain (K) must be multiplied so that the damping ratio increases from 0.3 to 0.9.
- (ii) Find the factor by which the time constant (T) must be multiplied so that the damping ratio decreases from 0.9 to 0.3.
- (iii) Show that $\frac{TK_1-1}{TK_1-2}=11\cdot 39$ when the system overshoot reduces from 70% to 30% where K_1 and K_2 are the values of K for 70% and 30% overshoot.

22AK/340

(Continued)

(b) Using generalized error series, calculate the steady-state error of a unity feedback system having

$$G(s) = \frac{40}{s(s+15)}$$

for the following excitations:

- (i) r(t) = 8
- (ii) r(t) = 4t + 5
- (iii) $r(t) = t^2/3 + 9$
- (iv) $r(t) = 1 + 18t + 25t^2 / 2$ 7+7=14
- 5. (a) Consider a unity feedback system with forward path transfer function

$$G(s) = \frac{K(s+5)}{s^3 + ps^2 + 8s + 3}$$

has the oscillation of 3-5 rad/sec. Determine the values of K_{marginal} and p. There are no poles in RHP.

(b) Draw root locus for the system having

https://www.akubihar.com

$$G(s) = \frac{K(s+2)(s+4)}{(s+1)(s+3)(s+5)}$$

and find the gain K for $\xi = 0.341$. 7+7=14

(a) Sketch the Nyquist plot for a system having

$$G(s)H(s) = \frac{10(1+0.9s)}{s^2(0.1s+1)(0.05s+1)}$$

In addition, comment on the closedloop stability.

(b) Sketch the Bode plot for the system

$$G(s)H(s) = \frac{Ke^{0.2s}}{s(s+10)(1+0.5s)}$$

Determine the system gain K for the gain cross-over frequency to be 4 rad/s. What is the phase margin for this value of K? https://www.akubihar.com 7+7=14

 (a) The open-loop transfer function with unity feedback is given by

$$G(s) = \frac{20}{s(s+8)}$$

Design a lead compensator such that the closed-loop system satisfies the following specifications:

Static velocity error constant = 15s⁻¹

Phase margin = 55°

Gain margin ≥ 12 dB

(b) Find K and a for a feedback system with forward path transfer function

$$G(s) = \frac{K}{s(s+a)}$$

so that resonant peak is 3-8 and resonant frequency is 30 rad/s. Also determine the settling time and bandwidth of the system. 7+7=14

8. (a) Find the transfer function of the given state-space model:

$$\dot{x} = \begin{bmatrix} -5 & 0 & 1 \\ 1 & -4 & 0 \\ 1 & 1 & -1 \end{bmatrix} x + \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 1 & 0 \end{bmatrix} u, y = \begin{bmatrix} 8 & 1 & -1 \\ 0 & 1 & 0 \end{bmatrix} x$$

(b) Consider the state-space model of an LTI system with matrices

$$A = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 8 \end{bmatrix}$$

Find the state transition matrix.

(c) Consider the LTI system

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ -5 & -9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

Find the non-homogeneous solution if $x_1(0) = 4$, $x_2(0) = 0$ and u is a unit step function. 4+5+5=14

22AK/340

(Turn Over)

- (a) Explain how linear state regulator is used for accommodation of external disturbances acting on the process.
 - (b) Derive the describing function of deadzone non-linearity.
 - (c) Describe the different types of singular points and discuss their importance in stability analyses of non-linear system. 5+4+5=14
