Code: 102804

B.Tech 3rd Semester Exam., 2019 (New Course)

THERMODYNAMICS

Time: 3 hours Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are **NINE** questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- (v) Students should be allowed to use the steam tables and Mollier diagram.
- 1. Choose the correct answer from the following (any seven): 2×7=14
 - (a) Ice kept in a wall-insulated thermoflask is an example of which system?
 - (i) A closed system
 - An isolated system
 - (iii) An open system &
 - (iv) Non-flow adiabatic system

20AK/317

(Turn Over)

https://www.akubihar.com

https://www.akubihar.com

4

(b) Which one of the following is the extensive property of a thermodynamic system?

- (i) Volume
- (ii) Pressure
- (iii) Temperature
- (v) Density
- of mechanical work is supplied to 2 kg of fluid and 400 J of heat is rejected to the cooling jacket. The change in specific internal energy would be
 - (i) 700 J
 - (ii) 350 J 🖊
 - √ai) 300 J 🕶
 - (iv) 600 J
- (d) First law of thermodynamics defines
 - (i) temperature
 - (ii) enthalpy
 - (jiii) internal energy
 - (iv) entropy

20AK/317

(Continued)

https://www.akubihar.com

https://www.akubihar.com

(e) Under what conditions, the change in the enthalpy of a system equals the heat supplied?

- Constant volume الله
- (ii) Constant pressure
- (iii) Constant temperature 🛩
- (iv) Standard temperature-pressure conditions
- (f) In a Carnot cycle, the rejection of heat is
 - (i) at constant pressure
 - (iii) at constant volume
 - (iii) at constant temperature
 - (iv) partly at constant pressure and partly at constant volume
- (g) A Carnot cycle is having an efficiency of 0.75. If the temperature of the high temperature reservoir is 727 °C, what is the temperature of the low temperature reservoir?
 - (i) 23 °C
 - (ii) -23 °C
 - (iii) 0 °C
 - 250 °C مُعْنَوُ

https://www.akubihar.com

https://www.akubihar.com

(h) Second law of thermodynamics defines

(i) entropy

- (ii) enthalpy
- (iii) efficiency
- (iv) internal energy
- (i) For a thermodynamic cycle to be irreversible, it is necessary that

(i)
$$\oint \frac{\partial Q}{T} = 0$$

(ii)
$$\oint \frac{\partial Q}{T} > 0$$

$$\int \frac{\partial Q}{T} < 0$$

(iv)
$$\int \frac{\partial Q}{T} \ge 0$$
 φ

- Which of the following parameters remains constant during superheating of steam?
 - (i) Temperature
 - (ii) Enthalpy
 - (iii) Pressure
 - (iv) Internal energy

90AK/317

(Turn Over)

https://www.akubihar.com

(5)

https://www.akubihar.com

.

2. gor State the first law of thermodynamics.
What is PMM1?

Define quasi-static process.

The internal energy of a certain substance is given by the equation u = 3.56 pv + 84, where u is given in kJ/kg, p is in kPa and v is in m³/kg. A system composed of 3 kg of this substance expands from an initial pressure of 500 kPa and a volume of 0.22 m^3 to a final pressure 100 kPa in a process in which pressure and volume are related by $pv^{1.2}$ = constant. If the expansion is quasi-static, find Q, ΔU , and W for this process.

(a) Derive an expression for conservation of energy for a steady flow process.

Consider a nozzle which is used to increase the velocity of a steady flowing stream. At the inlet to the nozzle, the enthalpy of fluid is 3000 kJ/kg and the velocity is 50 m/s. At the exit of the nozzle, the enthalpy is 2700 kJ/kg. The nozzle is kept horizontal and is well-

insulated. (i) Find the velocity at the exit of the nozzle and the mass flow rate. (ii) If the inlet area is 0.12 m^2 and the sp. volume of the fluid at the inlet is $0.19 \text{ m}^3/\text{kg}$, find the exit area of the nozzle, if the specific volume of the fluid at the exit is $0.5 \text{ m}^3/\text{kg}$. 6+8=14

State the Carnot theorem and explain with the help of suitable example.

Two reversible heat engines A and B are arranged in series, engine A rejecting heat directly to engine B. Engine A receives 180 kJ at a temperature of 422 °C from a hot source, while engine B is in communication with a cold sink at a temperature of 5.5 °C. If the work output of A is twice that of B, find (i) the intermediate temperature between A and B, (ii) the efficiency of each engine and (iii) heat rejected to the cold sink.

6+8=14

(a) State the prove Clausius theorem.

(b) Show that there is a decrease in available energy, when heat is transferred through a finite temperature difference. 7+7=14

20AK/317

https://www.akubihar.com

https://www.akubihar.com

(Continued)

(Turn Ove

20AK/317

https://www.akubihar.com

https://www.akubihar.com

20AK/317

- Show that the adiabatic mixing of two fluids is irreversible.
 - "An adiabatic process need not be isentropic, but if the process is adiabatic and reversible, it must be isentropic." Is it true or false? Explain with proper justification.
 - A reversible power cycle operates with temperature limits 800 K and 300 K. If it takes 480 kJ of heat, then what would be the unavailable work?

What are various forms of energy?

Consider a system of cylinder and piston arrangement containing gas. Initially, the gas is at 500 kPa and occupies a volume of 0.2 m³. The force exerted by the spring is proportional to the displacement from its equilibrium position. Take ambient pressure as 100 kPa. The gas is heated until the volume becomes 0.4 m³ and the pressure attained as 1 MPa. Determine the work done by the gas. Draw the 4+10=14 schematic and p-V diagram.

√What is the critical state? Draw the phase equilibrium diagram for a pure substance on h-s plot with relevant constant property lines.

Why do the isobars on Mollier diagram diverge from one another?

What is quality of steam? What are the different methods of measurement of 6+4+4=14 quality of steam?

Steam initially at 1.5 MPa, 300 °C 9. (a) expands reversibly and adiabatically in a steam turbine to 40 °C. Determine the ideal work output of the turbine per kg of steam.

With the help of suitable diagram, explain heating and humidification.

8+6=14

https://www.akubihar.com

https://www.akubihar.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स झैजे और 10 रूपये पार्ये,

Paytm or Google Pay *

20AK-2520/317

Code: 102304 https://www.akubihar.com

https://www.akubihar.com

https://www.akubihar.com

(Turn Over)