Code: 101101

B.Tech 1st Semester Special Exam., 2020

(New Course)

PHYSICS

(Mechanics)

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- (v) Symbols used (if any) have their usual meanings.
- 1. Answer any seven questions :

 $2 \times 7 = 14$

https://www.akubihar.com

https://www.akubihar.com

- The position of a particle of mass m under the influence of a free particle is given by $\vec{r} = A \sin \omega t \hat{i} + B \cos \omega t \hat{j}$. Find the expression for its momentum.
- Express \vec{r} of spherical coordinate system into unit vectors of Cartesian coordinate system.
- Give two examples of non-conservative forces.

(Tum Over)

- Define Euler angles.
- Consider a cloud of point particles interacting through gravitational forces and having a distribution of kinetic energy. What is the conditioner potential energy under which this cloud will contract?

(2)

- How long will it take the plane of oscillation of a Foucault pendulum to make one complete revolution if the pendulum is rotated at north pole?
- The natural frequency of a mass vibrating on a spring is 20 Hz while its frequency with damping is 16 Hz. Find logarithmic decrement.
- (h) If in an electric circuit $L = 10^{-2}$ H and $C = 20 \times 10^{-6}$ F, deduce its frequency of oscillations.
- Write down the expression for moment of inertia of a ring, axis passing through the centre and perpendicular to its plane.
- Define angular velocity vector. (i)

DAK/1275

(Continued)

https://www.akubihar.com

20AK/1275

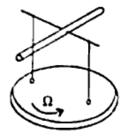
https://www.akubihar.com

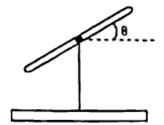
(4)

(3)

- (a) A particle moves in a circle of radius b with angular velocity θ = αt, where α (rad /sec²) is a constant. Describe the particle's velocity in polar coordinates.
 - Three freight cars of mass M are pulled with force F by a locomotive. Friction is negligible. Find the forces on each car.
- 3. (a) Derive length, area and volume elements in spherical coordinate system. https://www.akubihar.com
 - (b) The motion of a particle is observed for 10 seconds and is found to be in accordance with the following equation:

$$r = R$$
 (constant), $\theta = \left(\frac{\pi}{12}\right)t$ and $\phi = \pi t$


What will be its velocity?


- 4. (a) A force is said to be conservative if $\oint \overline{F} \cdot d\overline{r} = 0$. Show that this condition can also be written as curl F = 0.
 - (b) Prove that the electrostatic forces between two charges are conservative.
- 5. (a) What do you mean by equipotential surfaces? Find out the gravitational potential due to a thin spherical shell.

https://www.akubihar.com

20AK/1275

- 6. Write and solve equation of motion of a mass executing simple harmonic oscillator in the presence of a damping force. Also, discuss the cases of overdamping, critically-damping and underdamping oscillations.
 8+6=14
- 7. Derive Euler's equations of rigid body motion Consider a uniform rod mounted of a horizontal frictionless axle through its centre. The axle is carried on a turntable revolving with constant angular velocity Ω with the centre of the rod over the axis of the turntable. Let θ be the angle shown in the sketch below. Using Euler's equations, show that the motion of the rod is simple harmonic.

(Turn Over)

8

б

7

7

7

(Continued)

б

https://www.akubihar.com

https://www.akubihar.com

https://www.akubihar.com

(5)

- 8. Write short notes on any two of the following: 7-2-14
 - (a) Angular velocity vector and its rate of change
 - (b) Moment of inertia tensor
 - (c) Foucault pendulum
- 9. Write short notes on any two of the following: 7*2-1.
 - (a) Harmonic oscillator
 - (b) Satellite manocuvres
 - (c) Motion of a rod executing canonical motion with centre of mass fixed

. . .

https://www.akubihar.com

Code: 10