B.Tech 6th Semester Exam., 2016

COMPILER DESIGN

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are **NINE** questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Ouestion No. 1 is compulsory.
- 1. Choose the correct answer from the following $2 \times 7 = 14$ (any seven):

Right side of three-address code has how many numbers of operator at most?

- (iv) 3

Token is

a logically cohesive sequence of characters

- (ii) always same as lexeme
- (iii) non-terminal
- (iv) just string

(c) The regular expression for the language of all strings that have zero or more a's followed by zero or more b's is

- (a+b)
- (ti) ab
- _(ijj) a* b*
 - (iv) (ab)+
- (d) Cross-compiler is a compiler
 - (i) which is written in a language that is different from the source language
 - (ii) that generates object code for its host machine
 - (iii) which is written in a language that is same as the source language
 - that runs on the machine but produces object code for another machine
- A dangling reference is a
 - fi) pointer pointing to storage which freed
 - (ii) pointer pointing to nothing
 - (iii) pointer pointing to storage which is still in use
 - (iv) pointer pointing to uninitialized storage

AK16/689

(f) If a grammar is LALR(1), then it is necessarily

- (i) SLR(1)
- √# LR(1)
- (iii) LL(1)
- (iv) None of the above

(g) After removing left recursion from $A \rightarrow A\alpha / \beta$, the resulting grammar will be

- (i) $A \rightarrow \beta A'$
- (ii) A → αA'
- (iii) $A \rightarrow \alpha \beta A'$
- (iv) $A \rightarrow \beta \alpha A'$

(h) The traversal method translation schema adapted to execute the action is

- (i) depth first search
- (ii) breath first search
- (iii) depth breath first search
- (iv) long first search

(i) Consider the following grammar:

 $S \rightarrow cAd$

 $A \rightarrow ab \mid ac \mid a$

For input string cad, how many times the recursive descent parser will backtrack?

- 0/2
- (ii) 3
- (iii) 4
- (iv) 5

(j) Activation of procedures can be implemented by run-time storage. The part of run-time storage that is responsible for this is

- (i) data object
- (ii) target code
- (iii) stack pointer
- (iv) control stack

2. (a) With suitable example, explain the different phases of a compiler.

(b) Define left recursive grammar. Propose an algorithm to remove left recursion and apply that algorithm on the following grammar:

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

 $F \rightarrow id$

AK16/689

- (c) Explain the parameter-passing mechanism in the following cases :
 - (i) Call by value
 - (ii) Call by reference
 - (iii) Copy restore
 - (iv) Call by name

5+5+4

http://www.akubihar.com

3. K grammar is given below:

$$S \rightarrow A$$

 $A \rightarrow aB \mid Ad$

 $B \rightarrow bBC \mid f$

 $C \rightarrow g$

- (a) Find the FIRST and FOLLOW set.
- (b) Construct a predictive parsing table.
- (c) Trace whether the string "abbfgg" is accepted or not. 6+6+2
- 4. Consider the following grammar:

$$S \to 0.80 | 1.51 | 10$$

- (a) Find LR(0) collection of items for the above grammar.
- (b) Construct SLR parsing table.
- (c) Trace whether the string "01100" is accepted or not. 6+6+2

AK16/689

(Turn Over)

http://www.akubihar.com

- 5. Consider the following grammar : $S \rightarrow aSbS \mid bSaS \mid \epsilon$
 - (a) Find LR(1) collection of items for the above grammar.
 - (b) Construct LALR parsing table.
 - (c) Trace whether the string "01100" is . 6+6+2
- 6. What are intermediate codes in compilers?
 Why is it needed in compiler design? Discuss different types of intermediate codes generated by intermediate code generation phase.

7. (a) Define a basic block.

- (b) Write an algorithm to partition, a given sequence of three-address codes into basic blocks.
- (c) Apply the above algorithm to find out the basic blocks in the following code fragment:
 - (i) prod=0
 - (ii) i=1
 - (iii) t1=4*i

AK16/689

- (iv) t2=a[t1]
- (v) t3=4*i
- (vi) t4=b[t3]
- (vii) t5=t2*t4
- (viii) t6=prod+t5
- (ix) prod=t6
- (x) t7=i+1
- (xi) i=t7
- (xii) If i<=20 goto (iii)

- 2+5+7
- 8. (a) What is the advantage of using machine independent intermediate representation during translation process?
 - (b) Explain, with examples, what three address codes are. Give some common three-address statements.
 - (c) Find the three-address code of the following program. There are four bytes per word:

sum=0 for (i=1; i<=20; i++) sum=sum+a[i]+b[i];

2+4+8

- 9. (a) What is activation record? Explain its purpose in compilers.
 - (b) Write down the algorithm to find the FIRST and FOLLOW set of a grammar. Use that find FIRST and FOLLOW of the following grammar:

 $S \rightarrow ACB \mid CbB \mid Ba$ $A \rightarrow da \mid BC$ $B \rightarrow g \mid \varepsilon$ $C \rightarrow h \mid \varepsilon$

- (c) What do you mean by left factoring a grammar? Explain with the help of an example.
- (d) Explain the difference between syntaxdirected definition and translation schemes. 3+6+2+3

* * *

AK16-930/689

St. . . .