akubihar.com

BEE (108)

2011 (A)

Time: 3 Hours

Full marks - 70

Candidates are required to give their answers in their own word as far as practicable.

The questions are of equal value

Answer any five questions

- (a) State and explain Kirchoff's laws. Also verify.
 - (b) For the circuit given below, find Vs, if
 Ie = 2e tamp

2/ (a) State and explain Superposition theorem.

Using node voltage method, delirmine the voltage Va in the circuit shown below. Also find the current delivered by the controlled source.

- 3. (a) State and Explain Thevenin's theorem.

 How it is related Norton's theorem.
 - (b) Find the thevenins equivalent across terminal ab in the circuit shown below:

(a) Define the following related to AC:

2

(i) Period

R. .

(ii) Phase difference

1.830 (0007 h)

akubihar.com

- (iii) Average value
- (iv) RMS value
- (v) Form factor
- (b) Determine the form factor of the following waveform.

- (a) Explain Two wattmeter method for measurement of power in a 3- φ circuit.
- (b) Comment on the following:-
 - (i) Under what condition will the two wattmeters read equal?
- (ii) When will one of the wattmeters read negative.

- (c) Define the following:
 - (i). Active power
 - (ii) Reactive power
 - (iii) Apparent power
- 6. (a) State and explain Ampere's circuital law.
 - (b) Define self and mutual Inductance.
 - (c) An Iron ring of mean dia 10 cm and a cross sectional are of 2.5 cm^2 has an air gap of 2 mm width. It is wound with 1500 turns of wire carrying a current of 0.15 Amp. Assuming $\mu r = 800$, Determine the flux density in the air gap. Neglect leakage and fringing.
- 7. The resistance and leakage reactance of a 10 KVA, 50 Hz 2300/230V distribution transformer are as:

$$r_1 = 4.2 \Omega$$
 ; $r_2 = 0.042 \Omega$

$$xl_1 = 5.5 \Omega$$
; $xl_2 = 0.55 \Omega$

Subscript 1 & 2 denotes H.V. & L.V. side respectively akubihar.com

- (a) Give the total leakage impedance referred to H.V side and L.V. side.
- (b) Consider the transformer to deliver the rated KVA at 0.8 p.f. (lag) to a load on L.V. side with 230 V across the load. Find the high tension terminal voltage.
- (c) consider the core less to be 70W, find the efficiency under the condition of part (b).
- (a) Deduce the expression for voltage induced in the armature of DC machine.
 - (b) Classify different types of DC motors. Give their circuit diagram. Also draw speed torque characteristics for these.
- 9. (a) How rotating magnetic field is produced in the Introduction motor.
 - (b) Define slip & Draw torque-speed characteristics of IM.
 - (c) Why it is not possible to sum the induction motor at synchronous speed.

- Write notes on any two of the following:
 - Maximum power transfer theorem.
 - (ří) Auto transformer
 - (iii) Speed control of DC motor
 - (iv) Star-delta conversion

akubihar.com