http://www.akubihar.com

http://www.akubihar.com

http://www.akubihar.com

http://www.akubihar.com

http://www.akubihar.com

http://www.akubihar.com

Code: 011307

B.Tech 3rd Semester Examination, 2016 Fluid Mechanics

Time: 3 hours

Full Marks: 70

Instructions:

- (i) There are Nine Questions in this Paper
- (ii) Attempt Five questions in all.
- (iii) Question No. 1 is Compulsory.
- (iv) The marks are indicated in the right hand margin.
- (v) Assume data if necessary with proper justification.
- 1. Phoose the correct answer (any seven): 2×7=14
 - (a) Discharge coefficient of a 'Venturimeter' is:
 - (A) less than Orifice meter
 - (B) approximately equal to 0.65
 - (C) greater than Orifice meter
 - (D) greater than 1.2
 - (b) Correct unit for Kinematic Viscosity is:
 - (A) Ns/m²
- (B) m²/s
- (C) m/kg.s
- (D) kg/m^2s
- (c) For 2-D flow field, the equation of streamtine is given as:

P.T.O.

(A) u/dx=dy/v

(B) \rightarrow dx/u=dy/v

(C) du/dx+dv/dy=0

- (D) dy/u=dx/v
- (d) The stream function for a 2-D flow is given by $\psi = 2xy + \text{constant The flow between the streamlines}$ (1,1) and (2,2) would be:
 - (A) 4 units

(B) 6 units

(C) 8 units

- 10 units
- (e) Consider the Chezy's equation for the flow velocity through a channel: V = C√(mi) where V is flow velocity in m/s,m is the hydraulic mean depth in meter and i is longitudinal slope of the channel. The dimensions of the Chezy constant C are:
 - (A) $ML^{-1}T$

(B) $L^{1/2}T^{-1}$

(C) $M^{\theta}L^{\theta}T^{\theta}$

- (D) L^2T^{-1}
- (f) Each term of Bernoulli' equation has the unit of:
 - (A) Newton

(B) Meter

(C) Pascal

- (D) N/m²
- (g) The equation of motion for a viscous fluid are known as:
 - (A) Euler's equation
 - (B) Reynolds equation
 - Navier-Stokes equation
 - (D) Hagen-Poiseuille equation

Code: 011307

2

http://www.akubihar.com

http://www.akubihar.com

http://www.akubihar.com

http://www.akubihar.com

http://www.akubihar.com

http://www.akubihar.com

- (h) Momentum integral equation for zero pressure gradient is given by:
 - $\tau_0 / \rho = U_{\nu} d\theta / dx$ (A)
 - $\tau_o/\rho = (U_o d\theta/dx)^2$ (B)
 - $\tau_{\theta}/\rho = U_{\theta}^2 d\theta/dx$
 - $\tau_0 / \rho = U_n (d\theta / dx)^2$ (D)
- The pressure at the bottom of a water Lake is 1.5 times to that at half the depth. If the water barometer reads 10 m, the depth of lake is:
 - 10 m (A)
- 15 m (B)
- (C) 20 m
- 25 m (D)
- The barnoulli equation refers to the conservation of:
 - (A) mass
- (B) momentum
- (C) force
- energy
- 2 (a) State the Newton's law of viscosity and give examples of its application.
 - (b) The velocity distribution for flow over a trat prate is given by $u = \frac{3}{4}y - y^2$ in which u is the velocity in meter per second at a distance y metre above the plate. Determine the shear stress at y=0.15 m. Take dynamic viscosity of fluid as 8.6 poise.
- Code:011307

- P.T.O.

3. (a) An inclined-tube reservoir manometer is constructed as shown in Fig. 1. Derive a general expression for the liquid deflection, L, in the inclined tube, due to the applied pressure difference, Δp . Also obtain an expression for the manometer sensitivity, and discuss the effect on sensitivity of D, d, θ and SG.

Fig. 1

- 3. (b) What is manometer? How are they classified? 5
- (a) Derive an expression for the depth of centre of pressure from free surface of liquid of an inclined plate surface submerged in the liquid.
 - (b) Determine the total pressure on a circular plate of diameter 1.5 m which is placed vertically in water in such a way that the centre of the plate is 3 m below the free surface of water. Find the position of centre o pressure.
- 5. (a) Consider a flow with velocity components u=0. $v = -v^3 - 4z$, and $w = 3v^2z$.
- Code: 011307

http://www.akubihar.com

- i. Is this a one-, two-, or three-dimensional flow?
- ii. Demonstrate whether this is an incompressible or compressible flow.
- iii. Derive a stream function for this flow. 8
- (b) What do you understand by 'local acceleration' and 'convective acceleration'?
- (a) A 300 mm diameter pipe carries water under a head of 20 m with a velocity of 3.5 m/s. If the axis of the pipe turns through 45°, find the magnitude and direction of the resultant force at the bend. 8
- What is venturimeter? Derive an expression for the http://www.akubihar.com discharge through a venturimeter.
 - (a) When tested in water ($p = 998kg/m^3$ and $\mu = 0.001$ kg/m.s) flowing at 2 m/s, an 8 cm diameter sphere has a measured drag of 5 N. What will be the velocity and drag force on a 1.5 m diameter weather balloon moored in sea-level standard air $(p=1.2255 \text{ kg/m}^3 \text{ and } \mu = 1.78 \times 10^{-5} \text{kg/m.s})$? 7

P.T.O. Code: 011307

- (b) The drag force, F, on a smooth sphere depenus on the relative velocity, V, the sphere diameter, D, the fluid density, p, and the fluid viscosity, μ . Obtain a set of dimensionless groups that can be used to correlate experimental data.
- 8. (a) In Fig.2 the flowing fluid is CO₂ at 20°C. Neglect losses. If P,=170 kPa and the manometer fluid is Meriam red oil (SG=0.827), estimate (a) p² and (b) the gas flow rate in m3/h.

(b) What do you mean by boundary layer separation? Discuss the methods of preventing the separation of boundary layer.

Code: 011307

6

http://www.akubihar.com

http://www.akubihar.com

http://www.akubihar.com

http://www.akubihar.com

http://www.akubihar.com

http://www.akubihar.com

Code: 011307